Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 27(1): 59-66, Jan.-Feb. 2017. graf
Article in English | LILACS | ID: biblio-843792

ABSTRACT

ABSTRACT The effects of the hexanic extracts of the fruits and flowers of Clusia fluminensis Planch. & Triana, Clusiaceae, as well as their main constituents, the triterpene lanosterol and the benzophenone clusianone, were evaluated on hemipterans Dysdercus peruvianus and Oncopeltus fasciatus. The topical treatments of insects with the hexanic extracts significantly affected the survival of O. fasciatus, but not that of D. peruvianus. Concomitantly, extracts delayed the development of both hemipterans. Moreover, isolated lanosterol significantly reduced both the survival and development of O. fasciatus and D. peruvianus, while clusianone only reduce the survival of D. peruvianus and marginally inhibited the development of both insects. The results show the specific activity of lanosterol and clusianone against the two evaluated insect species and indicate the potential of compounds derived from C. fluminensis for the development of specific biopesticides for the control of agricultural pests. Subsequent work will examine the mode of action of lanosterol and clusianone isolates from C. fluminensis.

2.
Mem. Inst. Oswaldo Cruz ; 110(5): 629-635, Aug. 2015. ilus
Article in English | LILACS | ID: lil-755896

ABSTRACT

Studies evaluated the effects of hexanic extracts from the fruits and flowers ofClusia fluminensis and the main component of the flower extract, a purified benzophenone (clusianone), against Aedes aegypti. The treatment of larvae with the crude fruit or flower extracts from C. fluminensis did not affect the survival ofAe. aegypti (50 mg/L), however, the flower extracts significantly delayed development of Ae. aegypti. In contrast, the clusianone (50 mg/L) isolate from the flower extract, representing 54.85% of this sample composition, showed a highly significant inhibition of survival, killing 93.3% of the larvae and completely blocking development of Ae. aegypti. The results showed, for the first time, high activity of clusianone against Ae. aegypti that both killed and inhibited mosquito development. Therefore, clusianone has potential for development as a biopesticide for controlling insect vectors of tropical diseases. Future work will elucidate the mode of action of clusianone isolated from C. fluminensis.

.


Subject(s)
Animals , Aedes/drug effects , Clusia/chemistry , Insect Vectors/drug effects , Larva/drug effects , Plant Extracts/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL